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Generalization of helicoidal beams for short pulses
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A generalization to the transient regime is developed for waves with a phase singularity of the screw type.
These singular waves are commonly called vortices for all kind of waves as, for instance, optical vortex or
acoustical vortex. We generalize the definition of vortices to get an azimuthal velocity invariant for all the
frequency components contained in the broad spectrum of a short pulse. This generalization leads to a modi-
fication of the orbital angular momentum definition. Another generalization is introduced by considering
helicoidal waves with a finite number of turns. We demonstrate that, in this last case, the topological charge is
no longer an integer. This provides a physical interpretation to vortices of fractional charge that are involved
here to take into account the diffraction occurring at both tips of the now finite helical wave front. We show
that shortening the pulse implies an angular localization of the wave energy and, as a consequence, a spreading
of the angular momentum amplitude due to the uncertainty principle.
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I. INTRODUCTION

This paper presents a generalization of acoustical or opti-
cal vortices to the transient regime. We consider the case for
which polarization can be neglected and hence deals with
scalar wave fields only. The theory presented in the first part
is then illustrated by experiments with ultrasound in water.

In a homogeneous medium, optical or acoustical fields are
generally named according to the geometry of their wave
front, such as plane, cylindrical, or spherical waves. There
also exist waves whose wave front is a helicoid. Hence, these
ones are called spiral or helical waves, but also and more
commonly either optical or acoustical vortices (as they are
associated with an angular momentum) or sometimes screw
dislocations. The similarity between the geometries of the
wave front and the atomic plane of a screw dislocation in
crystallography [1] explains this last denomination. Optical
vortices carry a finite orbital angular momentum of /% per
photon [2], where [ is an integer called the topological
charge. It is this charge, or orbital angular momentum, which
confers to these special waves many interesting properties
for transport of information [3-5] and remote control of ob-
jects [6]. This field of research is growing fast and a lot of
works have been published in optics in the past few years.
The properties of optical and acoustical vortices in fluids are
closely related for paraxial waves [7,8]. However, contrarily
to optics, the speed of sound is nondispersive for most of the
media, so that the nonlinear interaction is more efficient in
acoustics, with high-order harmonics being easily obtained
(this is the so-called “harmonic cascade”). Recently, the re-
gime of weak helical acoustical shock waves has been inves-
tigated first numerically [9] and then experimentally [10].
Parametric antennas can also been used to carry out nonlin-
ear combinations of several states and so perform basic ar-
ithmetical computations using the topological charge [11].
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Furthermore, the finite angular momentum carried by an
acoustical vortex can be transferred to matter [12].

In all these studies, the waves are either monochromatic
or quasimonochromatic: a wave train of at least a dozen of
cycles. In optics, an intensive field of research is developing
for ultrashort femtosecond pulses [13,14]. However, even if
the laser pulses have a duration of about 6 fs and hence 2
cycles, the latest results show that the shortest pulses ob-
tained for optical vortices are wave packets of about 25 fs of
duration and, hence, contain about 10 cycles [15,16], which
is quite comparable to experiments performed in acoustics
[8]. These works, with coherent femtosecond sources, were
preceded by studies on white-light vortices (see [17], and
references therein), for which the spectrum is in the range
475-600 nm and hence has a relative bandwidth of 25%
comparable to vortices obtained with femtosecond sources
[15,16]. Even if the bandwidth may be much larger by non-
linear steepening [10], the wave is still made of the superpo-
sition of wave trains of a dozen of cycles at each harmonic.
In all these cases the topological charge is an integer propor-
tional to the order of the harmonics [8].

The usual modeling of a monochromatic vortex for a sca-
lar wave field in cylindrical coordinates (r, 8,z) is then

r,0,z,t) = F(r,z, 0)exp{i[ 10+ ko(r,z) — ot]}, 1€ Z,

(1)

with [ as the topological charge, k=w/c as the wave number,
o as the angular frequency, ¢ as the phase velocity, z as the
main axis of propagation of the wave, and ¢(r,z) as the
phase dependency on the radial (r) and axial (z) coordinates.
The radial dependence is less important and many formula-
tions exist. The most popular are Laguerre-Gaussian (LG),
r-vortex (RV), and Bessel waves see (Table I).

Here, w(z)=wyV1 +zz/z,2e is the beam width at z, wy is the
beam waist, zR=7Tw§/)\ is the Rayleigh range, \ is the wave-
length, and (2p+|I|+1)arctan(z/zg) is the Gouy phase. A and
B are real constants. The number p is related to the number
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TABLE 1. Different models for paraxial helicoidal waves.

Model F(r,z,w) @(r,2)

—r? 2r — rz
LG s LG [2 w(2)?] K7 2p+ 1]+ Darctan(z/ zg) - 555
RV Al gl z
Bessel AJ((kr) (k,/k)z

of nodes in the radial direction. « is related to k, by the
dispersion relation k2=k§+:<2 and determines the radial de-
pendence. Laguerre-Gaussian modes are a complete set of
solutions of the paraxial approximation of Helmholtz’s equa-
tion, whereas Bessel waves, i.e., cylindrical waves, are a
complete set of solutions of Helmholtz equation (plane
waves can be expanded into cylindrical waves with the
Jacobi-Anger relation). The key properties of the vortex arise
from the azimuthal angle dependence with a finite / and dis-
tinguish these waves from other nondiffracting ones, such as
Bessel waves of order zero [18] or X waves [19].

One can observe that the condition / € Z is related to the
continuity of the field with the polar angle 6. Indeed as trigo-
nometric functions are periodic of period 27, one gets

lim (r,0,z,t) = lim Ar,0,z,1) &1 e 7. (2)

O—+ O——m

This condition is required since valid solutions of the homo-
geneous Helmholtz equation are differentiable. However,
vortices of fractional charge, [ € R, have been studied theo-
retically [20,21] and observed experimentally [22]. However,
these waves do not propagate unaffected in free space, are
not axisymmetric, and can be written as a sum of integer
vortices (or cylindrical waves of integer order) [20,21]. Cy-
lindrical waves of fractional order have also been called he-
lical beams [23] and erroneously presented as a generaliza-
tion of Bessel beams. Indeed in this last reference, the helical
beam [Eq. (10)] that transformed from helical to cylindrical
coordinates is equal to a Bessel beam [Eq. (8)] but with a
fractional order g. We will show that solutions with a close
resemblance to vortices of fractional charge are required in
the generalization presented in this paper and how diffraction
smoothes the discontinuity at = * 7 and leads to a solution
compatible with Helmholtz equation in free space.

In Sec. II of this paper, we show that the definition of the
phase of a vortex given by Eq. (1) implies that a short pulse
on such a helicoidal wave front has a time shape that varies
with the polar angle. However, this problem can be solved by
generalizing Eq. (1) to transient signals. As a consequence
the topological charge has now to vary with the frequency
and, hence, can no longer be an integer for all the Fourier
components contained in the broad spectrum of the pulse.
However, the concept of transient vortex has to be discussed.
Indeed, by definition, the wave front of a vortex is a helicoi-
dal surface with an infinite number of turns. Hence, a line
parallel to the axis of propagation intersects the wave front
periodically at each turn. This situation contrasts with spheri-
cal or plane waves, for which the local wave vector intersects
the wave front at a single point. We will show the conse-
quences of such a periodicity on the topological charge. This

analysis does not depend on the kind of waves (optical,
acoustical, etc.) and is valid for any field that can be modeled
by a scalar wave function.

In Sec. III, an experiment for acoustical vortices at a 1
MHz frequency illustrates this generalization for various
charges. This experiment is carried out in the acoustical
weak shock wave regime. The nonlinear aspect is discussed
elsewhere [10], and here the shock front is used primarily as
a marker facilitating the identification of the wave front for a
broadband signal.

II. TRANSIENT VORTICES, TRUNCATED HELICOIDAL
WAVE FRONTS, AND FRACTIONAL CHARGE

A. Pulse whose shape remains constant with the azimuthal
angle

For a monochromatic vortex of charge / described by Eq.
(1), the wave vector is defined by

lZ:kﬁ=€[10+k¢(r,z)]:k<<o,,;é;<p,z>, (3)
where ¢ (¢,) is the partial derivative of the function ¢ in
direction z (r). The wave-vector component in the azimuthal
direction is independent on frequency, whereas in the direc-
tion z, it is as usual proportional to the angular frequency.
Assuming that 77 is the refractive index, then its radial and
axial components are independent of @ whereas its azimuthal
component n, is inversely proportional to the angular fre-
quency. This is in contradiction with the fact that we con-
sider here a simple homogeneous, isotropic, and nondisper-
sive medium. The modification required to keep a constant
[/k, and hence n,, consists of defining a charge a propor-
tional to the frequency,

a(w) = lw/w,. (4)

Here, we can choose [ € 7 without any loss of generality
since w, € R and can be adjusted continuously. This notation
allows us to recover a vortex of integer charge / for w=w,. A
convenient choice for wy is the central angular frequency of
the pulse spectrum.

Applying the modified charge [Eq. (4)] to Eq. (1) yields

le /.
(5)

For consistency, one can check that the phase factor
exp(il 6w/ wy) becomes after an inverse Fourier transform a
convolution product by 8(t—160/w,), where & is the Dirac
distribution and * is the convolution product. Therefore, the
pulse propagates along 6 without deformation and a com-

(r,0,2,t) = F(r,z, w)exp{i[ 10w/ oy + ko(r,7) — wt]},
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plete turn is achieved in a time interval of [T, where w
= 27T/ To.

This modification of the charge seems to lead to fractional
order vortices but, as discussed in the Introduction, fractional
order vortices are not a solution of the Helmholtz equation.
However, we will show in the experimental part that pulse
vortices do exist. This dilemma is solved in the next two
sections (Secs. II B and II C).

B. Helicoidal wave fronts with an infinite number of turns

On one hand, the modification [Eq. (4)] seems to impose
a noninteger charge « and, thus, vortices of fractional charge
for corresponding frequency components. On the other hand,
the discussion below Eq. (2) states that fractional order vor-
tices are not a valid solution of the wave equation in free
space. Now, we will show that, when the number of turns of
the helix is infinite, the spectrum is composed only of the
spectral lines (the frequencies) for which the charge is an
integer. This property is true whatever the shape of the pres-
sure pulse. Indeed, let us choose a monochromatic function
with an axisymmetric intensity and a fractional charge «
=wl/ ),

(r,0,z,t) = V(r,z,w)explio(Ol/wy —1)]. (6)

By inverse Fourier transform of Eq. (6), one obtains the
transient helicoidal beam,

10 10
lﬂan)*5<r-——>=v<nat—-—>, (7)
() wo

where v is the time representation of V. Clearly, Eq. (7)
shows that the pressure pulse is simply retarded or advanced
according to the sign of the charge. The time shift is linearly
dependent on the polar angle with a slope equal to I/ w.
Hence, the change applied on the definition of the topologi-
cal charge [Eq. (4)] ensures that the pulse now keeps its
shape and is just time shifted. This time shift arises from the
projection of the helicoidal wave front onto the transverse
plane. After one revolution in the transverse plane, or equiva-
lently one turn of the helicoid, the time shift is equal to
2ml/ wy=IT,. The pitch of the helicoid is then, in a time
representation (at fixed z), equal to IT}. As noted before since
T, € R this pitch can be adjusted continuously. Up to now we
have described only a single turn. In the monochromatic re-
gime, the wave front of a vortex is assumed to be a helicoid
with an infinite number of periodic turns. This periodicity is
a special feature of helicoidal beams compared to plane or
spherical waves, for instance. A display of a helicoidal sur-
face with three turns and a pitch equal to 1, compared to one
turn and a pitch equal to 3, is visible in Fig. 1. Each turn
corresponds to a revolution of the pulse #— 6+2 in the
transverse plane. To get an infinite number of turns, the sim-
plest modification of Eq. (7) is to reproduce the pulse after
each revolution, and hence with the period [T,. Note that this
corresponds to a helicoid with a onefold symmetry. To iterate
the revolution of the pulse around the axis, it is convolved
with a Dirac comb of period /7 to get
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FIG. 1. (Color online) Helicoidal surface of pitch equal to 1 and
truncated after three turns (left side), and of pitch equal to 3 trun-
cated after one turn (right side).

v"(r,z,t—l—0>=v<r,z,t—l—9)* E 8t —mlTy). (8)

(J)O (.00 m=—o0

As the signal u” is strictly periodic (as indicated by the su-

perscript “p”), it can also be written as a Fourier series. Us-
ing the Fourier series of the Dirac comb,

oo

> S8t —mlT,) = > exp{imayt/l}, 9)

m=—w m=—o0

and recognizing that, thereafter, the convolution product is
now a Fourier transform taken at discrete angular frequencies
equal to w=mawy/l, we get

1) <
vﬂ(r,z,t— —) = E V(r,z,mwdl)exp{im(ﬁ— %t)}

g m=—ow

(10)

This shows that the dilemma is a paradox when the pulse
vortex is not truncated along its axis and hence is made of an
infinite number of pulses. A pulse helicoidal beam is made of
the superposition of monochromatic helicoidal beams at an-
gular frequencies w=mw,/l. These spectral lines are located
at those frequencies for which the generalized topological
charge, a=Ilw/wy=m € 7, is an integer. This is the first im-
portant result of this work. This special feature comes from
the helicoid pitch and the onefold symmetry considered for
the wave front. These geometrical characteristics of the heli-
coidal wave front introduce a time-space periodicity that
does not exist for plane or spherical waves. This periodicity
implies resonances in a transverse plane that can be com-
pared to orbital resonances. Note that the helix pitch [T is
continuously adjustable for a pulse vortex as long as the
pulse duration is shorter than the helix pitch. For longer
pulses, constructive and destructive interferences between
consecutive turns appear. For monochromatic wave of period
T, the helix pitch is fixed by these interferences and is equal
to IT.

016601-3



THOMAS, BRUNET, AND COULOUVRAT

C. Fractional topological charges and truncated helicoidal
wave fronts

Up to now we have considered an infinite number of turns
for the helicoidal wave front. Obviously, in practical situa-
tions, the number of iterations of the pulse, i.e., the number
of turns of the helicoid, is finite. In this last case, the previ-
ous derivation is no longer valid. The helicoidal wave has
now a finite number of turns and this limitation can be mod-
eled by introducing a time window w(z) to get a finite num-
ber of pulses, so that Eq. (8) now becomes

rar )=l
vi\rz,t—— | =vlrzt——|%*
(O] o
(11)

where the superscript w is introduced to distinguish the time
windowed case from the periodic one. As the function v" is
no longer periodic, its Fourier series cannot be used as pre-
viously. However, Fourier series are just a special case of
continuous Fourier transforms in the context of tempered
distributions employed with square integrable test functions
like the pulse v. Indeed, the Fourier series in Eq. (10) is the
inverse Fourier transform of the frequency domain represen-
tation of the periodic function v”. So, the generalization of
Eq. (10) consists of performing the Fourier transform of Eq.
(I1) to get the field representation at a given angular fre-
quency w,

' (r,z,0,2,0) = V(r,z, w)exp{ iw( (lu_e) }

0

w(t) X, 8t—miTy) |,

m=—o0

%)

x| W(w)* > 5((1)—?(»0) exp{- iwt}.

(12)

To get the above equation, on one hand, products are re-
placed with convolution products and vice versa. On the
other hand, the identity between a Dirac comb and its Fourier
series [Eq. (9)] applied now to the Dirac comb of Eq. (11) is
used as usual to show that the Fourier transform of a Dirac
comb of period /T is a Dirac comb of period w/I.

When comparing the finite helicoidal case [Eq. (12)] to
the infinite and hence periodic one [Eq. (10)], one sees that
the energy remains distributed on spectral lines w=mwq/l,
but these lines are now no longer infinitely narrow: their
width depends on the spectrum of the window, W(w), or
equivalently on the duration of the time window, w(z), i.e.,
on the number of turns of the helicoidal wave front. The
shorter the signal (i.e., the less the number of turns of the
wave front), the larger the relative importance of the compo-
nents with a noninteger charge will be. Note that the field can
be made up of an arbitrary number of turns, and even of a
fraction of a single turn. A single turn is a special case. In
that case, as the pulse repetition does no longer take place,
the field fully looses its time-axial periodicity, the spectral
lines associated with that periodicity disappear, and the sig-
nal spectrum is simply the source pulse spectrum V(r, w).

Therefore, the dilemma is more complex when the num-
ber of pulse is finite. The truncation widens the spectral lines
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and, at these frequencies, the present analysis leads to frac-
tional order Bessel beams. A fractional charge leads to a
discontinuity [Eq. (2)], which is supposed to be located at
0=*a here. The polar angle ranges in the interval
0 e [-m,+7[ only and, hence, the field is not multivalued.
However, such a discontinuous function is not a solution of
the homogeneous Helmholtz equation in free space. exp(i«6)
is a periodic function of # and can be approximated by a
Fourier series involving integer vortices only (see the Appen-
dix). This series is truncated to fit in the angular spectrum
bandwidth of the wave ensuring that the solution is two
times differentiable. Therefore, the actual solution has a
close resemblance with a vortex of fractional order. It con-
sists of keeping a phase proportional to 6 everywhere but
over an angular sector around the discontinuity where the
evolution is no longer linear in order to connect the two parts
continuously. This behavior will be confirmed in the experi-
mental part (Fig. 10) and the Appendix provides a derivation
of the existence of diffraction and the loss of the circular
symmetry. Indeed, monochromatic vortices with a single in-
teger charge (like a sum of Bessel waves of different «’s but
with identical I’s) may diffract radially but their azimuthal
dependence does not depend on the distance of propagation.
Hence, the field keeps its circular symmetry for the intensity.
However, the truncation of the number of turn of the helicoid
breaks this circular symmetry. The existence of beginning
and end tips of the wave front implies diffraction along 6.
That diffracting part requires the superposition of vortices of
different charges at the angular frequency considered. This is
the signification of the spectral lines widening.

This section concludes the generalization to transient re-
gime of helicoidal beams. Two characteristic times were
identified in the previous section: the pulse duration and the
helix pitch [T}. The third is defined by the truncation of the
wave front: the number of pulses times the helix pitch. This
last characteristic time breaks the helical symmetry and in-
duces azimuthal diffraction. The dilemma is hence a paradox
and pulse helicoidal waves with finite or infinite wave fronts
have been described.

D. Geometry of the wave front

A remark can be made about the geometry of the wave
front. Let us introduce the variable s, which is identical to the
polar angle 6 over the range [—,n[ but without the 27
periodicity,

s=0+2mm, mel. (13)

If we consider a r vortex [1] for which F(r)=r"% and
¢(r,z)=z then the equiphase surface is defined by the con-
dition [Eq. (8)]

- ==X (14)
C

Using s to parametrize the surface yields

x=rcos(s),

y =rsin(s),
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lcs
7=——. (15)
o

This is the definition of a onefold symmetrical half helicoid
of pitch /cTy=I\, and a drawing of this surface is displayed
in Fig. 1. Indeed, a helicoidal surface is a ruled surface that
may be constructed by moving a straight line [by a rotation
in the transverse plane (x,y) along with a translation along
the axis]. A fully infinite line will give rise to a double helix,
while a single helix is obtained by a semi-infinite half line
(r=0). The vortex wave fronts considered here are only
single helices. The onefold symmetry means that (i) the wave
front is periodic and (ii) the period is a single turn around the
axis. Thus, the helix pitch in space representation (at fixed ¢)
is ¢lTy=I\,, and in time representation (at fixed z) it is I7,.

E. Orbital angular momentum

This modification of the topological charge from an inte-
ger [ to a real a=lw/w, [Eq. (4)] induces a change in the
orbital angular momentum expression. First we consider
monochromatic vortices of fractional charge and then we
take into account the fact that a pulse vortex is the superpo-
sition of vortices of different angular frequencies.

Considering paraxial and monochromatic waves only, and
following the derivation of [2], yields an analog expression
for the orbital angular momentum scalar component along z,
M, but where [ is replaced with @=Iw/ w. In the following,
(r,0,z,1) is either the potential vector of a linearly polar-
ized optical wave, A=y [2], or the scalar potential vector of
a longitudinal acoustical wave [7,8]. In both cases, the mo-
mentum density G that is equal to the Poynting vector P
divided by ¢? and written per unit power gives

B
.

C

G= =—m{(¢*€¢—¢ﬁ¢*), (16)

in which (r, 0,z, w)=¢(r, 0,7z, w)exp(—iwt), € is the permit-
tivity of the medium in optics, and e=p,/c? is the ratio be-
tween the density and the square of the phase velocity in
acoustics. Note that we use here € as in [8] and not ¢, as in

[2], so that G is indeed the pseudomomentum. The orbital
angular momentum density per unit power is

./\;l(r,z, 0,w)=7F A é(r,z,ﬁ,w). (17)

In cylindrical coordinates, its component along z is

MArz.00)=="5('6,= o6y, (18)

The potential field ¢ that is written as in Eq. (1) but now the
topological charge is real, «, and is defined in Eq. (4),

(r,0,z,0) = ¢(r, 0,7, w)exp(— iwr),

@(r,0,z,w) = V(r,z,w)exp(iab), (19)

yields
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M. (r,2,6,0) = ewa|p|*. (20)

Compared to the expression derived for monochromatic
fields of integer charge, the modification of the charge leads
to an orbital angular momentum that is no longer propor-
tional to the frequency, but has the same quadratic depen-
dency as the energy,

E=w’ e’ (21)

Here, we have assumed that for a paraxial wave the kinetic
and potential densities of energy (acoustics) or the electric
and magnetic densities of energy (optics) are equal. For each
frequency component, the ratio of Egs. (20) and (21) gives a
constant,

M) 1
fw) "o (22)

This relation is different from the one derived in [2] since
the denominator is w, and not w. This ratio [/ w, depends on
the helix pitch only. That result is reminiscent of the relation
derived for energy pumping on the harmonics in the nonlin-
ear regime [8,24] and signifies that the wave front has the
same geometry for all frequencies. This relation is general-
ized here to all the frequency components, either belonging
to the pulse bandwidth at the source or arising from nonlin-
ear transfers between harmonics during propagation. For iso-
tropic and nondispersive media, the wave vector is perpen-
dicular to the wave front. Thus Eq. (22) implies that the
wave vectors are all aligned. This means that the phase-
matching condition of wave-vector addition for nonlinear
harmonic generation is satisfied. The condition of addition of
angular frequencies is also satisfied for a nondispersive me-
dium. Hence, in nonlinear regime, the pulse will keep its
shape but, for the nonlinear steepening coming from har-
monic generation, that may lead to shock formation.

When the helicoidal wave front has an infinite number of
turns, this generalization to short pulses leads to quantized
angular frequencies w=mw,/l [Eq. (10)]. In that case, the
pulse vortex is the superposition of monochromatic vortices
of integer charge m. Since there is a single charge at each
frequency the circular symmetry is maintained. These mono-
chromatic vortices have different charges and hence are or-
thogonal modes when the integration on 6 is carried out,

1 +T
—f expli(m, —m,)6]ld0= 6,2 (23)
27)_, !

Therefore, the orbital momentum of short pulses on an infi-
nite helicoidal wave front is the sum of the orbital momen-
tum of the integer charge vortices at angular frequencies w
=muwy/l and charge m. This is a generalization of the result
obtained in [2].

When the helicoidal wave front has a finite number of
turns, angular frequencies are no longer quantized. More-
over, as is demonstrated in the Appendix and discussed pre-
viously the azimuthal component of the Poynting vector and
hence M, are now varying with @; this last quantity is no
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longer axisymmetric. This behavior is due to the diffraction
localized at the angle where the field would be discontinu-
ous. Let us note that

¢(r,0,z,w) = V(r, 6,7, w)explio(r, 6,7, w)}. (24)

Compared to Eq. (19), this takes into account fields that are
not axisymmetric. If we compute the integral of the ratio
M,/ along a closed curve around the singularity at r fixed,

we get
+m
)
= —df=—-—7 —do
E/, 2m)_, & o @

v v,
=3 l(,D‘0+_"/ do|, (25)

where J is the imaginary part. If we consider free space far
enough from any sources, we have continuity of the field,

M, ("M, 1 1~l

Yo, ¢ b6,z,0)=¢(r,0+2m27,w), (26)
so that Eq. (25) yields
M, 1 n
= —[o(r.+ mz,0) - ¢(r,— mz,0)] = —,
&/, 2mo w

27)

with n € Z. Therefore, this quantity multiplied by w is quan-
tized at each frequency even for truncated helicoidal waves.
If the energy is 7iw per particle like for optical vortices, then
we recover an orbital momentum of n per photon. This is the
last important result of this paper and completes the gener-
alization of helicoidal beams to transient regime. However,
the ratio of the integrals is not quantized,

(28)

An analytical expression can be derived in some particular
cases [21,22], p—sin(2ap)/ 2, and this behavior has been
experimentally confirmed in [22].

II1I. ULTRASONIC EXPERIMENTS
A. Experimental setup

The experimental setup (Fig. 2) and the inverse filtering
technique used to synthesize complex wave field pattern in
linear and nonlinear acoustics have been described previ-
ously [10,25]. The distance between the array and the control
plane is z=450 mm, where z=0 is the location of the source.
The main difference here is in the choice of the pressure
pattern U(r,w)=F(r)E(w) that we use as an input for the
inverse filtering technique. The radial dependence F(r) of the
pressure field is a Bessel function or order / multiplied by a
Kaiser-Bessel window. The radial dependence is identical for
all frequency components. The Kaiser-Bessel window is
used to limit the lateral extension of the field and provide a
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FIG. 2. (Color online) Sketch of the experimental setup. The
measurements are made at z=450 and 600 mm whereas the fields
are synthesized by inverse filtering at z=450 mm.

solution compatible with the limited aperture of the array.
The time dependence of the signal is adjusted to the band-
width of the array of transducers, the acoustic source. This
stage is carried out by defining its spectrum E(w) as a
Kaiser-Bessel window centered on the central angular fre-
quency wy/2m7=1.1 MHz (corresponding to a wavelength
close to 1.5 mm in water) and whose width is equal to the
bandwidth of the transducers. This spectrum is multiplied by
i to get a pure imaginary function in the Fourier representa-
tion, and hence an odd function in time. An odd function
allows us to get a shock at the middle of the pulse after
nonlinear propagation. This procedure is used to get a pulse
as short as possible and close to the duration of a single cycle
at half amplitude (see Fig. 4).

To check the feasibility of these helicoidal beams, we syn-
thesize transient vortices of pitches 37, and 47|, so that the
charge will be 3 and 4 at w=w,, respectively. Each of these
beams is synthesized for one, two, or ten helix turns (Fig. 3).
The selection of the number of turns is achieved by varying
the duration of the time window w(z), chosen as a square
window of, respectively, one, two, or ten times the pitch. The
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FIG. 3. (Color online) Wave front for a helicoidal beam with
one turn (left), two turns (middle), and ten turns (right).
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Pressure (MPa)

Time (us)
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FIG. 4. (Color online) (a),(c),(e) Pressure time signal and
(b),(d),(f) frequency spectrum measured at z=450 mm for transient
vortices of pitch 37, (blue dashed curves) and 4T (solid red
curves) and for (a),(b) one; (c),(d) two; and (e),(f) ten helix turns.

signal to apply at the boundary condition (the array at z=0)
to recover the “target” signal [Eq. (12)] at z=450 mm is
determined by inverse filtering [8]. The pressure field,
p(x,y,z,1), is then measured on a square (x,y)
€ [-20 mm,+20 mm] perpendicular to the beam axis z and
centered on it. The scanning step is Ax=Ay=0.5 mm in both
directions. These measurements are made either at z=450 or
600 mm away from the array.

B. Spectrum of a pulse vortex beam—integer and fractional
charges

The time wave forms and frequency pressure spectra
(modulus of the Fourier transform of the time wave forms)
measured at one point localized on the vortex ring at z
=600 mm are presented in Fig. 4. As expected from Eq.
(12), the energy is distributed on spectral lines whose width
is determined by the width of the window W(w). Indeed, for
long signals [ten turns, Figs. 4(e) and 4(f)], the spectral lines
are very sharp and narrow with little energy in between,
while when the width of the window w() is reduced to two
turns [Figs. 4(c) and 4(d)], the spectral lines—while still
visible—overlap and enlarge to fill the whole spectrum. For
both cases, the time lag, [T, see above, between two con-
secutive pulses is equal to the pitch and, hence, the orbital
resonances are closer when [ increases [from dashed to solid
lines (respectively, blue to red online)]. For the shortest win-
dow, only one turn remains [Figs. 4(a) and 4(b)], the spatial
periodicity of the helix is fully lost, and modulation in the
frequency domain disappears. In this last case, the observed
spectrum is simply the one of the elementary pulse V(r,w).
In summary, the position of the spectral lines depends on the
helix pitch. They correspond to frequencies for which the
topological charge is an integer, whereas the linewidth is
related to the number of turns. The energy located between
the spectral lines increases when the number of turns de-
creases. This increasing importance is correlated with the
relatively enhanced diffraction occurring at the tips of the
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FIG. 5. (Color online) Pressure amplitude (gray scale in MPa)
measured at z=600 mm for transient vortices of pitches (a) 37, and
(b) 4T, on a ring of width 0.5 mm and of radii 12 and 15 mm,
respectively. The vortices are made of ten turns, but one located in
the middle is presented.

finite helicoidal wave front. At the head and tail of the wave
front the beam intensity is no longer axisymmetric. Modeling
such a beam requires a sum of integer order vortices. We will
see below that this summation results in a continuous field
that has a close resemblance with a fractional order vortex.
Note also that the number of spectral lines depends on the
bandwidth of the pulse. In the linear regime, they should be
confined within the bandwidth of the transducers (here, 0.6—
1.6 MHz). However, since the propagation here is nonlinear,
the bandwidth of the elementary pulse, 0.6—-1.6 MHz, is du-
plicated by nonlinear harmonic pumping so that the fre-
quency spectrum extends up to 4 MHz.

C. Short pulses and large number of turns

In this section, we are interested in vortices with a large or
infinite number of turns. In this case the field is periodic with
a period equal to the vortex pitch [7,. From the pressure
amplitude, p(r, 8,z=600,¢) measured on a transverse plane
at z=600 mm, the data corresponding to a ring of width 0.5
mm and of radius 12 mm (r € [12,12.5]) for the vortex of
pitch 37, and r € [15,15.5] for the vortex of pitch 4T, are
extracted and displayed in Fig. 5. Here, we plot the pressure
amplitude in gray scale and in unit of MPa (color online) for
a window of duration one period /T located in the middle of
the wave train, visible in Fig. 4(e). This behavior is hence
characteristic of pulse vortices with an infinite number of
turns. The pressure amplitude is about 0.5 MPa so that at z
=600 mm a shock wave is obtained. This explains the fast
transition of the pressure field from negative to positive val-
ues and is used to facilitate the identification of the wave
front. The pulse is time shifted proportionally to the polar
angle and a turn is carried out in /7},. One can also check that
the pulse shape is constant in both cases even if weak am-
plitude modulation is present, i.e., the azimuthal dependence
is a phase term proportional to the frequency. This is a first
confirmation of the validity of the modification of the charge
[Egs. (4) and (8)].
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FIG. 6. (Color online) (a)—(c) Modulus (arbitrary units) and (d)-
(f) phase [-m,+] in gray scale. This subplot corresponds to the
vortex of pitch 37, duration of ten turns, and measured at z
=600 mm. Three angular frequencies located on the three main
spectral lines of Fig. 4, (a),(d) 2/3wy; (b),(e) 3/3wy; and (c),(f)
4/3wy, are selected.

From the instantaneous pressure amplitude, p(x,y,z
=600,7), measured on the whole transverse plane (x,y)
€ [-20 mm,+20 mm], a Fourier transform is performed to
get p(x,y,z,w). The modulus is displayed in Figs. 6(a)-6(c)
for three frequencies (w/wy=2/3, 1, and 4/3). The phase
is computed using the usual formula arg(p)
=arctan{J[p(r, 0,7, w)|/R[p(r, 0,7, w)]}, where 1R is the real
part. This result in a phase folded in the interval [—,+7].
This phase is displayed in gray (color online) scale for three
same frequencies subplots (c)—(e). These three frequencies
correspond to the center of the three main spectral lines in
the case of a window w(z) of duration ten turns [Fig. 4(f)].
The phase increases clockwise from —pi to +pi and the num-
ber of 27 steps after a complete turn is the topological
charge. This demonstrates that these beams carry an integer
topological charge (respectively, a=2, 3, and 4), increasing
by one unity from one line to the next one, in agreement with
the generalized charge of Eq. (4). Note that the intensity ring
is closed and almost axisymmetrical, so that the charge is
indeed an integer.

To confirm further that the charge is an integer, the phase
dependence with the angle 6 on large radii of 12 and 15 mm,
respectively, for vortices of pitches 37|, and 47, is extracted
and displayed in Figs. 7(a) and 7(b). The phase displayed in
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FIG. 7. (Color online) Phase measured at z=600 mm for tran-
sient vortices of pitch (a) 37} and (b) 4T on a ring of width 0.5 mm
and of radii (a) 12 and (b) 15 mm, respectively. Three angular
frequencies located on the three main spectral lines of Fig. 4:
(I-1)/lwq (solid blue line), w, (dashed red line), and (I+1)/lwy
(dashed-dotted green line).

Fig. 6 is folded in the interval [—ar,+7]. The 277 step is then
unwrapped with a classic algorithm and a continuous curve
is recovered. The width of the rings is as before 0.5 mm. The
three frequencies selected for the vortex of pitches [Ty=3T,
(left figure) and [Ty=4T, (right figure) are wy(/—1)/1 (solid
blue line), w, (dashed red line), and wy(l+1)/] (dashed-
dotted green line). These frequencies correspond to the three
spectral lines of highest amplitudes (Fig. 4). The phase for
0=—m has been subtracted so that the three curves start at the
origin of the graph. These three figures are computed for the
three spectral lines of both vortices on the same large ring
mentioned before. The phase is obviously linear with the
polar angle. The slope computed with a linear regression is
given in Table II. The fitting straight lines are plotted on the
same figure, so that the goodness of fit can be easily as-
sessed. These figures confirm that the charge is an integer,
the phase is proportional to the azimuthal angle, and the
charge increases from one unity from a spectral line to the
next one since it is proportional to the frequency [Eq. (4)].
To compute the charge, different methods can be pro-
posed: the phase slope, the phase increment when 6 varies
from 27 [Eq. (27)], and from the average of the orbital mo-
mentum normalized by the energy [Eq. (25)]. All these meth-
ods are equivalent (Table II) if the theoretical analysis devel-

TABLE II. Phase slope in multiple of 27 and average of local density of angular momentum multiplied
by o on a ring of large radius. This ring is located where the pressure amplitude takes its highest values.

Vortex pitch 37,
re[12,12.5] mm

Vortex pitch 47,
re[15,15.5] mm

® Phase/27 slope wX Eq. (25) X Eq. (27)

®  Phase/2m slope wX Eq. (25) wX Eq. (27)

2/3aq 2.0 2.0 2.0 3/4aw, 2.9 2.9 3.0
o 2.9 3.0 3.0 o 3.9 38 4.0
4/3a, 3.9 4.0 4.0 5/4w, 49 48 5.0
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FIG. 8. (Color online) Pressure amplitude measured at z
=600 mm for transient vortices of pitch (a) 3T, and (b) 4T, on a
ring of width 0.5 mm and of radii 12 and 15 mm, respectively. The
vortices are made of one turn.

oped previously is valid and can be applied to this
experiment. Since the phase can be calculated without any
derivative, the signal to noise ratio is better for the first two
techniques.

D. Short pulses and a finite number of turns

The same analysis is performed for the same vortices but
now the helicoid is truncated after one turn [Figs. 4(a) and
4(b)]. As in the previous section, the pressure amplitude,
measured on a ring of width 0.5 mm and of radius 12 mm for
the vortex of pitch 37 [Fig. 8(a)] and 15 mm for the vortex
of pitch 4T, [Fig. 8(b)] is displayed in Fig. 8. However, here
the whole signal is presented and the time window is
(I+1)T,, where [=3 or 4. Everywhere else the edges of the
wavefront located at §=-2, the pulse shape is invariant in
shape and is time shifted proportionally to the polar angle as
in the previous section. The difference with the infinite heli-
coids is the diffraction at the beginning and at the end of the
truncated helicoidal wave front where the shape is varying
(the phase slope is no longer proportional to the frequency)
here around #=-2 rad. Angular frequencies w/wy=2.25/3,
2.5/3, and 2.75/3—expected to correspond, respectively, to
charges @=2.25 [Fig. 9(a), modulus, and Fig. 9(d), phase],
2.5 [Fig. 9(b), modulus, and Fig. 9(e), phase], and 2.75 [Fig.
9(c), modulus, and Fig. 9(f), phase | —are selected in the case
of the vortex of pitch 37 and 1 turn. As the topological
charge is no longer an integer, the intensity field is no longer
axisymmetric. As noted before, for a fractional topological
charge, the field is discontinuous at some 6 value. Such a
field contains evanescent components and the discontinuity
is rapidly smoothed by diffraction localized at this 6 value
(see also the Appendix for more mathematical details). A
zero amplitude is observed as expected when the charge is
half of an integer, 2.5 here (w/wy=2.5/3), since the phase
jump is 7 in this case. For this charge, in addition to the
phase singularity of charge 2 in the vortex core, a second
phase singularity is clearly visible but not at the center yet. It
is located on the vortex “ring,” where the amplitude van-
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FIG. 9. (Color online) (a)—(c) Modulus and (d)—(f) phase of a
vortex of pitch 37 and duration of one turn measured at z
=600 mm, at three angular frequencies located between two spec-
tral lines of Fig. 4: (a),(d) 2.25/3wy; (b),(e) 2.5/3wy; and (c),(f)
2.75/3 wy.

ishes. As the charge increases, this second phase singularity
progressively migrates (see the case w/wy=2.75/3) toward
the center, while the ring of intensity is closing.

As in the previous section, the phase is extracted on
the same large radius but now for five angular frequencies:
(I-1,1-0.75,1-0.5,1-0.25,1)/ lwy, (Fig. 10). The phase for
0=— has been subtracted so that the five curves start at the
origin of the graph. The phase is linear with the polar angle
on a large portion of the domain, as expected from Eq. (4). In
this area the slopes are computed with a linear regression and
these lines are plotted. The slopes are as expected equal to
lw/ wy. However, the total phase increment on a turn is quan-
tized. This is possible thanks to the smooth transition be-

3,
o =2/3w x/
0 "{)
o =2.25/30 W
2.5F 0 P
= PR
_o 2.5/3(1)0 W
—_ Pk d
& o =2.75/3w P
2r 0 s
— e
S |\ 0= PR
2 0 27 -
= £ i
= 1.5¢ ,“ = 7o
S A Z22.7
~ VA z 777
8 - b
[0] Va ’! <
17} A PRt
© 1+ S PR
< ,/ pE et
o ‘/\~ PRt
vd '/ - td
’
%
0.5 > PR PR
Lzt L
e A, 2
% -,
O " i Ld i i i i i
-3 -2 -1 1 3

0
Polar angle (rad)

FIG. 10. (Color online) Phase measured at z=600 mm for tran-
sient vortices of pitch 37|, on a ring of width 0.5 mm and of radius
12 mm. Five angular frequencies located at 2/3w, (solid blue line),
2.25/3w, (dashed red line), 2.5/3w, (dashed-dotted green bottom
line), 2.75/3w, (dotted cyan line), and w, (dashed-dotted black up-
per line) are plotted. The fitting lines obtained by linear regression
are plotted with the same line types and colors.
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FIG. 11. Phase slope (dot), phase increment in multiple of 2
[Eq. (27) multiplied by w, circle], and average of the normalized
angular momentum [Eq. (25) multiplied by w, cross].

tween the two straight parts of the curve around #=-2. This
smooth transition switches from a negative contribution to a
positive one around (/+0.5)/lw, so that the total phase in-
crement switches from (I—1)2a to [2r. These results con-
firm the loss of the circular symmetry and the smooth tran-
sition induced by diffraction. The direction of the momentum
is constant on a large angular sector far from the edges and in
this area its azimuthal component is continuously adjustable
with the helix pitch (the phase slope). If one is interested in
orbital momentum transfer to absorbing particles or targets,
the helix pitch is the important parameter.

These figures, phase slope, and phase increment can be
calculated as in the previous section (Table II) but now at
each frequency (Fig. 11). The phase slope is a straight line as
expected from Eq. (4). However, the phase increment is
quantized [Eq. (27)] and takes the expected values, whereas
the computation with Eq. (25) is also nicely quantized but
the levels are below the expected values for high frequencies
obtained here by nonlinear harmonic pumping. This discrep-
ancy may come from the experimental noise that increases
artificially the energy.

E. Angular phase velocity

The energy velocity and phase velocity are identical in an
isotropic and nondispersive medium. The energy velocity is
defined as the ratio between the Poynting vector and the
energy density and can be easily computed from the relation

ii=c (29)
and from Eq. (3), so that

-k

‘= wk;. (30)

This yields the azimuthal energy velocity
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FIG. 12. (Color online) (a) Modulus and (b) phase of vortex of
pitch 37, and duration of one turn measured at z=450 mm. The
angular frequency is located between two spectral lines of Fig. 4 at
2.5/3wy.

1/ (kr)
{2+ [k + ()%
The charge defined in Eq. (4) is introduced in Eq. (31) to get

(31)

cy=c

Ce — l/(kor)
e+ ko) + (0,07
where ko= wq/c.

For a paraxial wave, one can check that this rotation is
slow,

(32)

(@) <1, (¢)*=1, Ulkyr)=(IN)/Q2mr)<1=
[
C=~c— <c. 33
cy Ckor c (33)

Indeed, the phase of a vortex of order / varies from 2/ on a
circular contour around its axis of length 27rr. This variation
in a transverse plane can be analyzed by angular spectrum
decomposition. This plane wave decomposition introduces a
transverse wavelength \,=\,/sin(¢), where ¢ is the angle of
the plane wave with the axis. ¢ is bounded by /2 at eva-
nescent cutoff where 2mr=I\,=I\,. For radial coordinates
closer to the axis the field intensity should be exponentially
decreasing. A paraxial wave is made of plane waves whose
directions of propagation are close to the beam axis: sin(¢)
<1 and hence we may restrict our analysis to (INg)/(27r)
<l1.

We apply Eq. (33) to our vortex of pitch 37| in order to
compute the angle of rotation A6 when the vortex propagates
from z=450 to 600 mm. The computation is A6
=(c[f/r)(Az/c) with r=15 mm, ¢=1470 ms™', w,/27
=1.1 MHz, and a distance Az=150 mm. We get Af§~30°.
Since for a fractional charge the field is not axisymmetric,
this azimuthal evolution can be used as a marker to deter-
mine the rotation of the helix during the propagation. In Fig.
12, the modulus [Fig. 12(a)] and the phase [Fig. 12(b)] are
displayed for the vortex of pitch 37, one turn, w=2.5/3wy,
and at distance z=450 mm. A comparison with Fig. 9 where
the same beam is measured at z=600 mm shows that, in-
deed, the field has been rotated by an angle of about 30°.
However, the accuracy of this measurement is poor since the
hole in the ring is significantly enlarged by diffraction at z
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=600 mm. Moreover, the radial coordinate of the intensity
ring is not measured with a good accuracy. Nevertheless, the
qualitative agreement is good. Note that the travel time is
close to 1007 since Az=100\,, which is very large com-
pared to the helix pitch [7(. This azimuthal velocity should
not be confused with the rotation velocity when the time
evolution of the field is measured in a transverse plane (see
[10]). In that last case, as demonstrated in Sec. II, Eq. (8),
and visible in Figs. 5 and 8, a revolution is performed in a
duration equal to the pitch I7,.

F. Uncertainty relation

Another feature emphasized here is that the shorter the
pulse, the higher the charge and the more the pressure field is
confined in a small angular sector of a cross-section plane at
z and 1 fixed (Fig. 5). Thus, a one period pulse will occupy a
third of the circumference for a pitch 37|, at a given time.
This angular localization of the field at a given z and time ¢
must be associated with a spreading of the angular momen-
tum. This spreading appears in Eq. (10) and is experimen-
tally confirmed in Fig. 4: the shorter the pulse, the larger its
spectral width. However, this spectral width determines the
number of charges necessary to synthesize the vortex, which
means the spreading of the angular momentum [Eq. (10)].
Note that this angular confinement of the field is due to the
measurement onto a two-dimensional (2D) transverse plane
of the three-dimensional wave field. Actually the field is in-
variant on a helix if the number of turns is infinite. This
uncertainty principle between the angle position and the or-
bital angular momentum can be easily derived from the pre-
vious analysis. This remains valid for any scalar field. Indeed
Eq. (22) implies

)
AM_ =—AE, (34)
o
whereas Eq. (8) or Eq. (11) for the continuous case provides
a relation between standard deviation of polar angle and
time,

Af= %At. (35)

Multiplying the two, we have the same uncertainty relation
between angular momentum and polar angle on one side, as
between energy and time on the other side,

AGAM, = AIAE. (36)

That last uncertainty relation between time and energy comes
from the Fourier transform properties. Indeed the spectrum
width of a pulse is inversely proportional to its duration. The
pulse width in polar angle is the pulse duration multiplied by
wy/l due to the projection of the helix onto the transverse
plane [see Eq. (7)]. On the opposite, the orbital angular mo-
mentum is inversely proportional to wg/! since the Poynting
vector component in the transverse plane is increasing with
the pitch. This uncertainty principle occurs also if a mono-
chromatic vortex is screened by an angular sector mask [26].
However, here the angular dependence is not affected by the
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finite range of size 27 of the polar angle as soon as the
elementary pulse time duration is shorter than the periodicity
due to the helix pitch, [T,,. This limit corresponds to the
existence or not of interferences between pulses attached to
two consecutive turns. So for shorter pulses the angular po-
sition probability density is determined by the shape of the
freely adjustable pulse envelope only. When the number of
turns is large the energy distribution becomes confined to
spectral lines due to the “orbital” resonances. However, even
in this case, the spectral line amplitudes are determined by
the spectral width of the elementary pulse and the number of
turns is responsible of the linewidth [Eq. (12)]. Hence, the
uncertainty relation is unchanged but the standard deviation
of the orbital angular momentum is now increasing by jump
from one spectral line to the next one, whereas the standard
deviation in angle remains a continuous function.

IV. DISCUSSION

A generalization of helicoidal waves, or vortices, for tran-
sient regimes has been derived for scalar wave fields. It
shows that the pulse wave front remains a half helicoid what-
ever is the frequency, provided the definition of the charge is
modified. This last one is a measurement of the stretching of
the helix and this helix pitch is no longer quantized. This
modification shows that the frequency components of the
pulse vortex are monochromatic vortices of consecutive in-
teger charges if the helix has an infinite number of turns. The
number of observed charges is determined by the bandwidth
of the elementary pulse and the helix pitch. This is in agree-
ment with the uncertainty principle. Indeed as a shortening
of the pulse implies a localization of the energy within a
smaller angular sector, this must be accompanied by a
spreading of the angular momentum. Besides, a sharp trun-
cation in the axial direction would lead to vortices with frac-
tional charges at intermediate frequencies between the spec-
tral lines. However, fractional vortices are discontinuous
function of the polar angle and this discontinuity is smoothed
by diffraction. This diffraction occurs at the head and tail of
the truncated helicoidal wave front where the field intensity
is no longer axisymmetric. Although the orbital momentum
is no longer quantized in this last case, the phase increment
along a closed curved is still. These results have been con-
firmed by ultrasonic experiments in water, for which shock
waves are used to identify the wave front, but the theoretical
results are of general validity for either optical or acoustical
vortices.

In particular, there may be of special interest for ultrashort
optical vortices with femtosecond sources. Indeed, if the
generalization presented here is not taken into account, the
shape of the pulse cannot be maintained and will vary with
the polar angle. This may be one of the causes involved in
the pulse lengthening observed in recent experiments with
ultrashort sources and cited in the Introduction. Another in-
teresting point is that if this modification is actually applied,
the pulse should be repeated with the adequate periodicity as
described in Fig. 4 and Eq. (8). Otherwise, vortices with a
single turn are synthesized and hence diffraction is strong.
However, this generalization may considerably simplify the
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problem since only spectral lines are required to synthesize
pulse vortices with an infinite number of turns. For instance,
our experiment and analysis provide the number of spectral
lines, or synchronized continuous laser sources, required to
synthesize a pulse of predefined duration. Thus, if the central
angular frequency is wy, the bandwidth is Aw, and the helix
pitch is I/wy, then the number of spectral lines is An
=lAw/ wy [Eq. (12)]. Since An depends only on the relative
bandwidth (the ratio Aw/w,), a pulse of 1 cycle requires
about / spectral lines whatever is the central frequency. Note
that to separate two pulses, the helix pitch must be longer
than the pulse duration and hence for the case considered
above /=2. Hence a 1 cycle pulse optical vortex with /=3
requires three synchronized continuous lasers only. The rela-
tive weight and phase of the continuous sources will deter-
mine the pulse duration.

APPENDIX: VORTICES OF FRACTIONAL CHARGE
AND DIFFRACTION

We consider separate variable solutions of Helmholtz
equation in cylindrical coordinates. The angular spectrum
method is used here to propagate the field in the direction z.
The radial and azimuthal dependency of the field in a trans-
verse plane and 7 and z fixed is

Y (r,60,z=0) = f(r)e'*’. (A1)

A 2D Fourier transform on coordinates (x,y) of the trans-
verse plane is used to compute the angular spectrum,

Foplf(r)expliad)]= f f f(r)exp(iaf)
Xexp{-i(gx +q,y)}dxdy. (A2)

The Cartesian coordinates are then changed to polar coordi-
nates:

ge=gqcos(v), x=rcos(6),

gy=gsin(v), y=rsin(6). (A3)

Applying this change of variables to Eq. (A2), leads to

720[f(r)€xp(ia0)]=J f(r)rdr
0

Xfw exp{ilaf— gr cos(6-v)]}de.

(A4)

Another change of variable will transform the integral on
the polar angle into the definition of the Bessel function.
First, we rewrite Eq. (A4) as
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Foplf(r)exp(iab)] =exp[ia<v— g)]f f(r)rdr
0
[ et le-o-3)
_Wexp —ifa\v-6-7
—qr sin(v— 0- g)]}d@ (A5)

Secondly, we set {=gr and 7=v—60—m/2. In the case, a=I
€ 7, the integral on the polar coordinates is the integral defi-
nition of the Bessel function,

fﬂ exp{—i[l7= ¢ sin(D) [} dr=2mJ (L), (A6)

since the integrand is a periodic function and the domain of
integration is one period of this function. We can then rewrite
the Fourier integral as a Hankel transform of order / of the
function f, noted as H,[f](q),

Foplf(r)exp(il®)] =2 exp{il( V- g) }f f(nJ(gr)rdr
0

=27 exp{il( v— g) }H,[f(r)](q),

lel. (A7)

To go further, the function f(r) must be defined. We are
looking for solutions of the Helmholtz equation with sepa-
rated variables. These solutions are well known since they
are used to identify the modes of a cylindrical waveguide,

U(r,0,z,1) = J(kr)expli(16 + k z — wt)},

w2
K2+k§=(—>, K # 0. (A8)
The case k=0 is the case of the r vortex, f(r)=r=% In the
following, we choose in Eq. (A1), f(r)=J/(kr), a=1 € 7, and
z=0. Then the field can be easily propagated with the angular
spectrum method at range z using the orthogonal relation of
Bessel function,

H[Ji(kr)](q) = (A9)

ok —q)
<
so that the angular spectrum of this field is a ring of radius
g=«k and hence contains no evanescent waves as long as «
=w/c. The field propagated at an arbitrary range z writes

FoplFopltr, 6,0,0Texp(imz)] = ¥(r, 6,2,1),

2
T
C

This result is rather trivial since, on one hand, Ar, 0,z,1) is
a well known valid solution of the Helmholtz equation with
separated variables and, on the other hand, the dependence
on z, k,z—wt, corresponds to the time of flight. On the con-

(A10)
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trary if [=a &7 in Eq. (A8), the field is no longer a continu-
ous function of the polar angle [see Eq. (2)]. This means that
¢ is not actually a solution of the homogeneous Helmholtz
equation. Indeed, it is a solution of the inhomogeneous
Helmbholtz equation. A source term involving distributions is
required to take into account the partial derivatives of the
discontinuity at #= * 7. The same problem arises for the
Green’s function. For instance, in 2D or cylindrical coordi-
nates, Bessel functions of the third kind or Hankel functions
are solution of an inhomogeneous Helmholtz equation with a
divergence on the axis. The angular spectrum of the Hankel
functions contains evanescent components. Their sum, the
Bessel function, is a regular function. Even if a Bessel wave
of fractional order is not a valid solution of the homogeneous
Helmbholtz equation, it can be used as a boundary condition
at z=0. This boundary condition may be propagated with the
angular spectrum method. However, in the previous deriva-
tion, if /£7 then the integral on the left-hand side of Egq.
(A6) is not a Bessel function. Therefore, the previous deri-
vation is no longer valid. We may decompose the azimuthal
dependence as a Fourier series,

i sin[m(a—n)]

) (A11)

exp(iab) = exp(inb).

Using Eq. (All) in Eq. (A5) and using again the Bessel
function definition, Eq. (A6) gives an equation comparable
to Eq. (A7),

Foplf(riexp(iab)]

§ sin[m(a—n)]

=2
m e m(a—n)

Xexp(in(v— 751->>7-[,l[f(r):|(q), a e R.

(A12)

As separated variable solutions of the Helmholtz equation
involve the solution of the Bessel equation for radial depen-
dence, therefore the general solutions is written as in Eq.
(A8), but now the integer azimuthal index [ is replaced with
a € R. More generally the radial dependence can be written
as a sum of Bessel waves of order a with varying «,
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wlc
f(r)=f [A(k) o(k7) + B(k)J_okr)]dK,  (A13)
0

since J, and J_, are two independent solutions of the Bessel
equations if @&Z. The interval of integration is bounded by
w/c to reject evanescent waves [see Eq. (A8)]. The deriva-
tion used for the integer case breaks because we can no
longer use the orthogonal relation [Eq. (A9)]. Indeed the
Hankel transform involves now two Bessel functions of dif-
ferent orders: n and «. Hence, calculating Eq. (A10) is much
more difficult and requires numerical solutions.

However, we may use the angular spectrum propagator to
get the field at z,

¥(r,0.2) = Fypl Foplf(r)expliad) lexp(imz)], (A14)
and get

W 6.0) =2 i sin[m(a—-n)] 1

=, ma-n) @Qun)?

« f f Hn[f(r)](q)exp(i”(”‘ 757))

Xexpli(gx + g,y)texp(imz)dq,dqg,.
(A15)

Performing the same change of variable from the Cartesian
to polar coordinates yields

§ sin[m(a—n)]

e T(a—n)

wlc
Wr6,2) = explind) [ 00
0

Xexp(imz)J,(rq)qdq. (A16)

Since the Fourier series is unique, the field is nondiffracting
if and only if

Yz, Vn,

wlc
f H,Lf(r))(@)exp(imz)J,(rq)qdq = f(r)exp(ik z),

0
(A17)

which is obviously not true. And it is also clear that the field
is no longer a function with separated variables as expected
since this field is a solution of an inhomogeneous Helmholtz
equation. Reciprocally, the modeling of the ends of the heli-
coidal wave front requires both diffraction and a coupling
between the coordinates (r, #,z) that cannot be described by
integer topological charges.
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